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Abstract. A system to process seismic signals of vehicles passing be-
tween two sensor stations had been developed and experimented. To
evaluate the feasibility of the system before field test with a real vehi-
cle and to support the classification model with artificial data later, the
input seismic data were simulated from Green’s method function that
accounts only for Rayleigh surface wave. The system using the Machine
Learning Classification method SVM to classify data collected from two
stations at any time have the state of passed or not. By processing the
signal, the system could detect whether the vehicle had passed the cross-
ing line or not with the accuracy of 99.10 % for simulated data and
94.22 % for experiment data. The experiment and results suggested that
processing seismic signals to monitor control lines is feasible.
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1 Introduction

The monitoring tasks over an area for vehicle detection have many applications, most
commonly for security over an interested area. For example, a chemical weapons pro-
duction facility needs to detect illegal or suspicious movements quickly, so an official
can take suitable actions in response. For a wide surveillance zone, it would be costly
and difficult to only use personnel to cover the area completely. For alternative technol-
ogy solutions, many motion detectors are developed with unsuitable characteristic such
as the Active Sensors with high energy consumption that needed power supplement
regularly are impractical in many cases.

For peace-keeping and security tasks, the system is required to have a medium -
large working range, can sustain for a long period of time and does not emit signal
that notify any unwanted party. Thus, the author’s approach turns to the seismic wave
analyzing. This is a passive detection technique, so the equipment would not emit any
signal to the environment. At the same time, it is also cheaper, smaller and has a wider
range of working than some other sensors.

For the passive detection methods, a large proportion of research is based on pro-
cessing acoustic signal, image and infrared signal [5], [3],[9]. Seismic signal, on the other
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hand, is being studied less because it is more complicated. It consists of different types
of wave, propagates in different forms, with different speeds and directions, and are
dependent on the geology of the interested environment.

Despise all the difficulty, this is still an attractive research approach for the stated
problem. The reasons for that was the seismic waves are less sensitive to Doppler effects,
noises introduced by the moving vehicle and atmosphere compare to sound, image, and
infrared signals. Seismic wave also holds the possibility for non-line of sight detection
at significant range.

Table 1. Capabilities of the seismic detection method [10]

Target type Detection range (m)

Vehicles-wheeled (light) 200

Vehicles-wheeled (heavy) 400

Vehicles-tracked (light) 500

Vehicles- tracked (heavy) 1000

The seismic wave is categorized into two main type: body waves (e.g. compressional
(P) wave, shear (S) wave) and surface waves (e.g. Rayleigh wave, Love wave). At the
measuring point, the signal collected is the sum of both body waves that propagate in
three dimensions through the interior of the earth and the surface waves that propagate
in two dimensions through the surface of the earth. This property tells us that the
diminishing rate of a signal for surface waves is R2, much less than R3 of the body
waves. Hence, most of the signal gather at sampling point come from surface waves.

When considering surface waves, Rayleigh wave holds the largest proportion of
impact energy, 67%, while that of the shear wave and the compressional wave are 26%
and 7% [8]

The seismic wave propagation to the surrounding in a spherical surface for body
waves and in a circle for surface waves. Though there are multiple kinds of waves,
when the faraway target are detected, only the Rayleigh wave, which accounted the
most part of the energy in the seismic wave, can be relied on to analyze. Hence, in this
research, the main focused were simulating and analyzing Rayleigh wave for vehicle
detection.

2 Experiment

The experiment took place on the site of Hanoi University of Science and Technology,
Hanoi, Vietnam in 28 Apr. 2018. The target of the experiment was to collect seismic
signal generated from the vehicle motion to test the function of the detection system.

In the experiment, the following equipments was used: two sensor stations each with
a geophones LGT-20D10 and a circuit with opamp OPA2134PA for collecting data;
3 marking stations each with one motion sensor module HC-SR501 for marking the
begin, the end and the threshold; two notebook computers, two Arduino Uno, battery,
relay SRD-12VDC-SL-C, IC LM7805CV TO220 and connecting cables.
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The experiment use the default Arduino 10-bit ADC port with internal reference
voltage of 5 V. To eliminate the 50 Hz ’hum’ noise from the power grid, the Arduinos
are power by the Notebook’s battery through the connecting cables. The circuit with
opamp OPA2134PA was built to offset signal with 2.5 V base and 0 gain. The ex-
periment setup with two Sensor stations S0, S1 and three Marking stations M0, M1,
M2 is described in the figure below. When there is motion at M0 or M2, the signal
collected from the geophones transmitted to the offset circuit, converted to digital and
recorded in a Arduino for each geophone with Sampling frequency of 400 Hz. The M1
sensor marking the threshold would notify both Arduino when the vehicle moved past
it and saved labeling data. To synchronize the starting, threshold and stopping mo-
ment between both Arduinos, each of the three Marking stations is connected to both
Arduinos by connecting cables. After collected, the data were manually transfered into
the notebook for later processing.

Fig. 1. Experiment setup

The geophones were placed 0.15 meters underground and 0.5 meters away from
roadside of the testing common road made of asphalt. The Marking stations were
placed at roadside with the height of 0.25 meters from the road surface. The geophone
testing range is Rmax and the distance between the geophones are D. The vehicle
were measured at three different speeds V, with three repetitions for each. The speeds
were controlled by the driver watching the speedometer so that any acceleration and
deceleration happened outside M0-M2 range and the speed was remained constant
between them. Recording was started and stopped automatically when the sensors at
Marking station detected vehicle motion in the road. The vehicle used in the experiment
was a KIA Morning 2015 car.

3 Method

3.1 Simulated data generation

Firstly, a simple quarter car model (QCM) had been used by the author to represent
the forces exerted to the ground as the vehicle move over irregular surfaces. For wheeled
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vehicles moving over the perfectly flat ground, the irregularity forces were still presented
due to the small gaps in tire treads. To justify QCM as a valid vehicle simplification,
several assumptions had been made [7]:

– A point contact patch assumption is deemed sufficient as typical wavelengths of
generated Rayleigh waves are greater than the characteristic dimensions of a vehi-
cle.

– Total vehicle mass is distributed evenly to all wheel stations at all time
– The road surface is rigid.
– Freezing the low frequency ’body bounce’ vibration (around 1-2 Hz). This as-

sumption can be made since the generated ground vibrations are usually at high
frequency.

In Fig. 2, the Ft represented the force exerted by the compression of the tire spring
due to the vertical displacement of the wheel zr. Thus, the vertical displacement of the
wheel could be represented by a Frequency response function (FRF) with the input
zr(t).

Fig. 2. A quarter car vehicle model

The input zr(t) as shown in Fig. 2 is the elevation changes caused by the tire tread
and the irregularity of the surface road. For simplicity, the variation in surface profile
over which the wheel (modeled as a point contact) traverses could be estimated as a
finite series of a half sine wave pulses.

{
zr (t) = zrmax sin (2πftrt) for zr (t) ≥ 0
zr (t) = 0 otherwise

(1)

The frequency of the input ftr could be calculated by the corresponded moving
velocity V of the vehicle over the tread pitch a. Using a simple Fourier Integration,
the input in the frequency domain had the expression:
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zr (ω) =

∫ ∞
−∞

zr (t) e−iωtdt (2)

According to the QCM, the displacement of the wheel from its static position are
described in the equation:

Mw
∂2zw
∂2t

+Bs
∂zw
∂t

+ (Kt +Ks) zw = Ktzw (vt) (3)

where Kt and Ks are the Tire compliance and the Suppressing spring stiffness
individually. Using Fourier transform to solve equation (3), the elevation of the wheel
in the frequency domain is:

zw (ω) =

ω2
1 zr (ω)√

(ω2
0 − ω2)2 + (2ωα)2

exp

[
−i tan−1

(
2ωα

ω2
0 − ω2

)]
(4)

where ω0 = ((Kt +Ks)/Mw)1/2 is the Hop resonance frequency, ω1 = (Kt/Mw)1/2

is the Tire bouncing resonance frequency and α = Bs/2Mw is the Normalized damping
coefficient.

Having both the displacement of the wheel and the input signal in the frequency
domain, the equation of the force spectrum for a single wheel axle could be established
:

Ft (ω) = Kt[(zw (ω) − zr (ω)] (5)

The QCM described above is only valid for modeling a single axle wheel displace-
ment. Considering the effects of multiple axles, a simple superposition of all-wheel hop
displacement responses should be taken to establish the ground force spectra. The
wheel hop response differently at each axle differs by a phase shift that depended on
the distance from it to the front axle E1n divided by the vehicle forward speed V

Fmwz (ω) = Fz (ω) .

(
1 + exp

(
iω
E12

V

)
+ exp

(
iω
E13

V

)
. . .

+ exp

(
iω
E1N

V

))
(6)

Where Fz(ω) is the force spectrum for a single wheel axle.
Another thing needed to be calculate is the Rayleigh determinant and its derivative:

F (k) =
(
2k2 − k2s

)2 − 4k2vlvs (7)

where k is the projected distance onto the z = 0 plane of the current wave vector,
vl, s = (k2−kl, s2)1/2 are no specified expressions, kl,s = ω/cl,s are the wavenumber of
bulk longitudinal and shear acoustic waves. cl = [(λ+2µ)/ρ]1/2 is the phase velocities of
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bulk longitudinal acoustic waves, cs = (µ/ρ)1/2 is the phase velocities of shear acoustic
waves, where λ = 2µσ/(1 − σ) is the Lame first parameter, σ is the Poisson’s ratio, µ
is the shear modulus and ρ is the soil mass density.

Note that in the consideration case, the contribution of bulk waves to the ground
vibration field generated on the surface are proportional to (kl · r)−2 and (ks · r)−2

respectively for longitudinal and shear waves, where r is the distance from the vibration
source to the observation point. For comparison, the Rayleigh waves contribution is
proportional only to (kR r)−1/2. Thus, further calculations will take into account only
the contribution of Rayleigh surface waves (in equation (7) : k = kR, where kR is the
wave number of a Rayleigh wave).

Solving equation F(k) = 0 [6], the kR was achieved as the real root of this equation,
thus also determined the velocity of Rayleigh waves cR = ω/kR. Taking account of
attenuation of generated ground vibrations in the ground result in kR = (ω/cR)(1+iγ),
where 0 < γ � 1 is the Loss factor which describes the linear dependence of a Rayleigh
wave attenuation coefficient on frequency ω.

Next, the vibration spectra generated by the vehicle-induced ground forces using
Green’s function method (taking into account only generated Rayleigh surface waves)
were expressed:

vz (ω) =(
2π

kR.r

) 1
2 (−iω) kRkSvsvl

2πµF ′ (kR)
Fmwz (ω) . e−kRγ.r. eikRr−

3π
4

(8)

where F (kR) is the derivative of F(k) taken at k = kR and R is the distance from
the vibration source to the observation point.

To develop a more robust system, a family of NON-LINEAR moving tracks, which
still satisfy the requirement that the moving velocity is a constant, needed to be gen-
erated. Thus, the experiment setup was developed and described in Fig. 3.

Fig. 3. Simulated experiment setup
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where the two sensors were placed at O1 and O2 which have the distance between
two points is D and Rmax is the working radius of the geophone.

There were infinite number of Nonlinear moving tracks from line y = D to line
y = 0, but to satisfy the requirement of constant moving velocity, the solutions were
limited than before. Thus, the moving track of vehicle was chosen as a function of a
circle in Descartes coordinate system.

(x− x0)2 + (y − y0)2 = R2 (9)

{
x = x0 +Rsin

(
V
R
t+ ϕ

)
y = y0 +Rcos

(
V
R
t+ ϕ

) (10)

To applied the simulated location r to equation (8), notice that the distance r from
the vehicle to the observation point here is a constant. Since the vehicle was moving
continuously while collecting data, the distance from the vehicle to the observation
point was also varied. To use the equation (8), some assumption is required to simplify
the problem.

The traveling distance of the vehicle were divided into n small bins. An assumption
had been made that when the vehicle is inside a bin, the distance between it and the
observation point remained unchanged and equaled to the distance of the center of the
bin to the observation point. Thus, the equation (8) could be used to obtain a vertical
displacement spectrum for each bin with its corresponding Rn (Fig. 4).

Fig. 4. Vehicle travel distance is divided into small bins in which all data inside a bin
have the same distance Rn to the observation point.

After acquiring a set of vertical displacement of the wheel in the frequency domain
with respect to each Rn to the observation point, performed Inverse Discrete Fourier
Transform (Inverse Fast Fourier Transform to be precise) and merged all data with
respect to each bin defined before. The result simulated signal has the form in Fig. 5.

The parameters used in the simulation process were shown in Table 2.

3.2 Data classification with Support Vector Machines (SVM)

SVM is a supervised learning model with associated learning algorithms that analyze
data used for classification and regression analysis. It was first proposed by Cortes &
Vapnik [4]. In 1992, a method to create a nonlinear classifier is proposed by Bernhard
E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik [2]. This method applied Kernel
trick, originally proposed by Aizerman et al.[1], to maximum the margin hyperplane.
Since there are available library that had been optimized, the Sklearn library had been
chosen to implement SVM.
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Fig. 5. Simulated signals of 2 sensors. Each peak at the time when the vehicle is closest
to the sensors.

After acquiring the labeled data, an attempt was made to train the model directly
with the Raw data by SVM algorithm. The result was very poor and highly sensitive
to the skewness of the data. Looking back into Greens function method to find the
vertical displacement in equation (8), it shown that the displacement was dependence
on the distance in the Frequency Domain but not in the Time Domain. Thus, the main
features to train the model was chosen to be the transformed data in the frequency
domain.

The hyperparameter window size was chosen to represent the number of data taken
to analyzed at each individual sampling moment. As a common practice, the Discrete
Fourier Transform (DFT) was not used directly to convert data from the time domain
to the frequency domain. Instead, the Fast Fourier Transform (FFT) was chosen for
the increase in preprocessing speed. Thus, the hyperparameter window size is cho-
sen as windowsize = 2n with n is a positive integer and window size is bound by
windowsize ≤ number of data. After that, the data was padded with the size accord-
ing to the window size.

Because each feature of a data was not completely independent, the ground velocity
varies in different ranges [Min, Max] of different datasets, performing Min Max Scaling
or Normalization were needed on all Fourier transformed features. After that, the Min
and Max values was added as two new features for each data.

Next, the transformed data set were randomly divided into the Training set, the
Cross-Validation set and the Test set with ratio 8:1:1. Then, the Standardization pro-
cedure were performed on each feature so that they have mean = 0 and standard
deviation = 1. That was the final step of the preprocessing procedure.

After that, the model was trained with the preprocessed Training set using the
Sklearn SVM library.

Finally, the hyperparameter window size was tested and evaluated on the classifi-
cation model. Since hyperparameters depend on the characteristic of the dataset, the
window size was chosen by testing with different value on the dataset to see which
would bring the highest accuracy. To test the effect of the different window sizes with
different dataset size, a test on multiple simulated datasets were made and the result
are shown in section 4.
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Table 2. The simulated parameters

QCM Parameters Symbol / Unit Kia Morning 2015

Total Vehicle Mass Mv /kg 940

Mass of Wheel Mw /kg ∼ 15

Number of wheel Nw 4

Vehicle Forward Velocity V/kmh−1 5, 10, 15

Tread Pitch a /m 1.409−3

Magnitude of Discontinuity zrmax /m 0.005

Wheelbases E12 /m 2.385

Soil Mass Density ρ/kgm−3 1800

Shear Modulus µ/Nm−2 4x107

Loss Factor γ 0.05

Poisson’s Ratio σ 0.25

Geophone testing range Rmax /m 10

Distance between geophones D /m 20

Distance between
threshold to S0

DS0 /m 10

Distance between
threshold to S1

DS1 /m 10

4 Result and Discussion

4.1 Result

Simulated data generation After choosing the size of the data set as 2048 (211)
number of data, 40 simulated datasets were generated with the randomized starting
point, velocity, Non-linear moving tracks as presented in 3.1. A results of the moving
track and simulated signals in the time domain were shown in Fig. 6.

A result of experiment data were shown in Fig. 7.

Data classification The effect of the different window sizes with different number
of SIMULATED dataset can be seen in Table 3:

The effect of the different window sizes with different number of EXPERIMENT
dataset can be seen in Table 4:

The predicting accuracy of the system trained with all nine EXPERIMENT datasets
are shown in Fig. 8 in which the dash-line shown training accuracy while the other
shown cross-validation accuracy.

Choosing the window size that brought the highest accuracy in a large size dataset,
the window size = 6 was chosen for SIMULATED data and window size = 1 for
EXPERIMENT data. To not be biased by the cross-validation data set, a final analysis
on a Blind Test Set that the model has never seen before was used to evaluate the
system and result in the accuracy of 99.10% for SIMULATED data and 94.22% for
EXPERIMENT data.

Some conclusions can be made in Fig. 8 and Table 4. Overall, the predicting accu-
racy of the system are very high. Beside, there were a slight decrease in the accuracy
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Fig. 6. A sample of track and simulated signal in the time domain.

when more datasets was added and the more datasets were used, the smaller the win-
dow size would bring the highest accuracy. This result implied that the current datasets
were still not large enough to generalize the model to reach its best potential. Thus, ac-
quiring more data and combining with the artificial datasets to train the model would
much likely increase the predicting accuracy.

4.2 Discussion

At present state, a working system have been constructed to collect and analyze seismic
signal generate from a moving vehicle. Preprocessing and Machine Learning techniques
are used to classify acquired data thus determined whether the vehicle have passed the
threshold or not.

The tests has been conducted only on a common road at HUST university using
a 2015 KIA Morning car. Further tests are needed for integrating the artificial data
and acquiring more data with different vehicle types to develop more robust analyzing
system. With a small modification, the system can be made to work in real-time that
satisfy the requirements of a long-lasting, unnoticeable, robust vehicle detection system
with large monitoring range.
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Fig. 7. A sample of track and simulated signal in the time domain.

Table 3. (SIMULATED DATA) Accuracy with different window sizes and different
number of training datasets

Window size (2n)
1 2 3 4 5 6 7 8 9

N0
of

train-
ing

data-
set

5 87.60 93.46 96.00 97.75 98.83 99.02 96.88 93.36 88.28
10 87.60 94.78 97.07 99.02 99.02 99.17 98.29 95.85 91.11
15 87.01 93.42 97.20 98.70 99.19 99.12 98.57 96.58 92.84
20 86.35 94.19 96.97 98.56 98.80 99.39 98.93 97.56 94.53
25 86.99 94.39 97.01 98.81 99.18 99.02 99.18 97.38 95.02
30 86.10 93.96 97.51 98.31 99.19 99.19 98.96 97.84 94.84
35 85.81 93.71 97.15 98.63 99.26 99.26 99.20 97.81 94.53
40 86.01 93.63 97.16 98.68 99.05 99.28 99.13 97.96 95.47

ACKNOWLEDGMENT

We would like to express our gratitude to the staff members in the Department of Preci-
sion Mechanical and Optical Engineering, Hanoi University of Science and Technology,
Vietnam for supporting the research. We also would like to show our gratitude toward
Mr. Anh Nguyen, Mr. Binh Nguyen and Mr. Phuong Le for their help in building the
hardware for the experiment.

References

1. Aizerman, M.A.: Theoretical foundations of the potential function method in pat-
tern recognition learning. Automation and remote control 25, 821–837 (1964)

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on Computational learning
theory. pp. 144–152. ACM (1992)

3. Choe, H.C., Karlsen, R.E., Gerhart, G.R., Meitzler, T.J.: Wavelet-based ground
vehicle recognition using acoustic signals. In: Wavelet Applications III. vol. 2762,
pp. 434–446. International Society for Optics and Photonics (1996)

4. Cortes, C., Vapnik, V.: Machine learning. Support vector networks 20, 273–297
(1995)

11



T. Duong et al. Page 12

Table 4. (EXPERIMENT DATA) Accuracy with different window sizes and different
number of training datasets

Window size (2n)
1 2 3 4 5 6 7 8 9

N0
of

train-
ing

data-
set

1 98.83 98.83 98.59 98.59 98.83 99.53 99.06 97.66 96.96
2 98.71 98.61 98.71 97.64 99.04 98.93 97.86 93.35 93.89
3 97.30 97.18 95.92 95.23 94.48 94.25 94.66 95.00 96.84
4 93.83 94.68 94.60 94.43 95.02 94.09 94.85 96.38 97.32
5 95.61 95.34 95.61 95.14 95.47 95.20 93.51 93.95 95.03
6 95.12 93.97 94.59 94.64 94.28 94.19 92.51 90.63 92.15
7 94.96 93.69 93.11 91.12 90.87 89.60 89.80 90.52 90.44
8 93.90 93.81 92.11 90.07 89.35 88.42 87.02 87.67 88.24
9 94.90 93.87 93.23 90.76 90.32 88.03 87.97 88.82 88.84

Fig. 8. Accuracy over window size with nine datasets.

5. Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with wire-
less sensor networks. In: Acoustics, Speech, and Signal Processing, 2001. Proceed-
ings.(ICASSP’01). 2001 IEEE International Conference on. vol. 4, pp. 2033–2036.
IEEE (2001)

6. Krylov, V.V.: Computation of ground vibrations generated by accelerating and
braking road vehicles. Modal Analysis 2(3), 299–321 (1996)

7. Krylov, V.V.: Generation of ground elastic waves by road vehicles. Journal of
Computational Acoustics 9(03), 919–933 (2001)

8. Lan, J., Nahavandi, S., Lan, T., Yin, Y.: Recognition of moving ground targets by
measuring and processing seismic signal. Measurement 37(2), 189–199 (2005)

9. Sabatier, J.M., Xiang, N.: An investigation of acoustic-to-seismic coupling to detect
buried antitank landmines. IEEE transactions on geoscience and remote sensing
39(6), 1146–1154 (2001)

10. Stotts, L.B.: Unattended-ground-sensor-related technologies: an army perspective.
In: Unattended Ground Sensor Technologies and Applications II. vol. 4040, pp.
2–11. International Society for Optics and Photonics (2000)

12


