
한국정밀공학회지  제 36권 제 8호 pp. 683-690 August 2019 / 683

J. Korean Soc. Precis. Eng., Vol. 36, No. 8, pp. 683-690 https://doi.org/10.7736/KSPE.2019.36.8.683

ISSN 1225-9071 (Print) / 2287-8769 (Online)

Deep Regression for Precise Geometric Dimension Measurement

Thang Duong Nhat1, Binh Nguyen Duc2, Phuong Le Khac2, Ngoc Tu Nguyen3, and Mai Nguyen Thi Phuong4,#

1 Artificial Intelligence team, NAL Vietnam JSC, Hanoi, Vietnam

2 Center for Training of Excellent Students, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam

3 National Canter for Technological Progress, Hanoi, Vietnam

4 Department of Precision Mechanical and Optical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam

# Corresponding Author / E-mail: mai.nguyenthiphuong@hust.edu.vn, TEL: +84-913345972

ORCID: 0000-0001-9981-4343

Keywords: Deep learning, Planar-dimension measurement, Geometric distortion

A planar-dimensions vision measurement method is proposed by developing a Neural Network to measure real-world

distance between any two points on the plane. The system leveraging Neural Network ability to search in the solution

space is a highly non-linear model that could map points’ location on the pixel plane of image(s) with the actual distance

between them considering the non-uniform geometric distortion in captured images caused by the entocentric lens in a

common camera. The method was tested with a printed calibration chessboard, placed in different locations on the plane,

with measured distance between tested points. Experimental results show the proposed method’s mean absolute error is

1.24 × 10-2 mm and standard deviation is 1.63 × 10-3 mm, tested with 10-folds cross-validation method.
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1. Introduction

Geometric measurement is being used widely in the industry.1-3

Since a planar-dimensions measurement system has the advantage

of lower in cost, more precise (since there is no matching image

cross camera process), there have been a number of applications in

the field of industrial measurement.4,5 Still, there exist some

disadvantages in the use of the general optical instrument in 2D

measurement such as long measuring time, personnel's subjective

error and hard to integrate the system into a fully automatic

measuring process. Thus, the introduction of computer vision

technology in geometric measurement achieved huge success with

its non-contact, fast processing speed, robust and high precision

characteristic.

Using Computer Vision (CV), several measuring methods and

improvements have been proposed.6-8 Unlike the traditional

methods, the CV based methods suffered from two major error

sources: measurement errors from the software and systematic

errors from the hardware. The measurement errors are mostly

generated when an algorithm is used to schematized edge points or

to determine the sub-pixel location of key features. Systematic

errors came from image distortions (due to lens aberrations and

misalignment of optical elements9), digitization error and others.

Not just the common camera with entocentric lens, even those with

high-quality telecentric lens cause non-uniform image distortion,

corrupt the sub-pixel detection algorithms, thus, reduce the

precision in measurement. With increasingly higher precision

requirement, multiple techniques.10-12 have been developed to use

in measuring process to mitigate the effect of image distortion, and

they have been successfully applied for 3D measurement. 

In general, using a uniform model of image distortions in the

camera calibration process proves its limited effectiveness.13,14 This

calibration procedure often used the Brown–Conrady model15 to

corrects both for radial distortion (Fig. 1) and for tangential

distortion (Fig. 2). In common practice, a division model16 is being

used since it provides a more accurate approximation than Brown-
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Conrady's even-order polynomial model.17 However, this

calibrating model can only correct the most common distortions,

which are radial and tangential, with some estimated error, while

not considering the other irregular patterns of distortion.

Since the severity of the distortion is related to the principal

point, thus, lessen its effect at the image center, often only the

center region of the image is used generally for the measurement to

ensure accuracy. This proves disadvantageous in the industrial

environment. To address this problem, with regard to all non-

uniform distortion patterns in the image, a method that is accurate,

fast, robust, easy to calibrate for all types of camera and have a

wide working area, has been proposed using the power of Deep

learning, in particular, Deep Regression Neural Network.

2. Method

2.1 Classical Image Undistorting and Measuring Process

Commonly, the first step to undistort an image is to calibrate the

camera. Typically, a calibration chessboard with measured patterns

is used to find all the key features (the corners where the black tiles

touch each other's). Then, from these key features in the pixel

plane and the actual distances between features point in the real

world, the intrinsic and extrinsic parameters of the camera and the

relative location of the object compared to the camera can be

calculated.12-18 Then, using these parameters, the ratio of the

measured dimension to its true dimension can be established with:

(1)

where x = (xpixel, xrealworld) is the coordinate of key features in the

pixel plane and in the real world, I(x) is the intrinsic parameters and

E(x) is the extrinsic parameters.

Then, the corrected estimate of the true dimension, D́, can be

calculated by: 

 ́D = (2)

where Di is the initial dimension measured in the pixel plane.

2.2 Neural Network Measuring Process

Instead of using an approximation undistort model such as the

Brown–Conrady model then some other function for warp

perspective task in Eq. (1), a Neural Network can be used as a

general mapping procedure between the input x and the output

corrected estimate of the true dimension in Eqs. (1) and (2).

A neural network is represented in Fig. 3 where there are

multiple nodes in a layer and multiple layers in a network.

The first layer of the network has the same number of nodes as

the number of input (For example: 2 points × 2 coordinate = 4

input features). For a simple Multi-Layer Perceptron (MLP)

network, each output of the layer is the input of the next layer. In

each node of the network, the input is processed through a linear

function:

(3)

where i is the index of the current node, j is the index of one of the

nodes in the previous layer, wij is the weight to be optimized

ϕ
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Fig. 1 Radial distortion in entocentric (common) camera: a) Barrel

distortion, b) Pincushion distortion, c) Mustache distortion

Fig. 2 Tangential distortion is produced when the lens is not parallel

to the image plane (the camera sensor)

Fig. 3 A simple neural network
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between node i and j, aj is the output of node j and bi is the bias

value of this node.

Next, the result of this linear equation is passed through a non-

linear equation, for example, a Rectifier Linear Unit (ReLU):

aj = max(0, zi) (4)

Then, the value aj will be passed into the next layer and stop at

the output node, where the value of the output node is the model's

predicted value.

Since a Neural Network is a stack of multiple Non-linear

functions on top of each other, it has the ability to search for a

highly Non-linear solution, which can solve multiple complex

problems very effectively. The method for a Neural Network to

search for the desired solution that can map the input X to the

output y, in this case, mapping the coordinate in the pixel plane to

the actual distance between two point in the real world, is to define

a loss function that represent the difference between the network's

output y' and the target y. For a regression problem, the loss

function chosen is often Mean Square Error, but in this experiment,

the author chose Mean Absolute Error to compare the result with

previous research: 

(5)

where n is the number of samples in the dataset,  is the model

prediction and yi is the actual target of sample i.

To obtain a network that can represent the desired solution, one

need to optimize all parameters wij and bi in Eq. (3) so that the Loss

value in Eq. (5) is the smallest possible. Then, this network is

‘trained’ with a randomly initialize the weight wij. Next, the Loss

value between the model output and the actual output is calculated.

This value will be used with the Back-Propagation method, using a

Gradient Descent based strategy, to find the gradient of each wij

and bi in the network. In other words, the information on how to

update each wij and bi to lower the Loss value is now available for

the optimizer, which would run the weights update procedure

recursively until some terminated criterion is satisfied. The

resulting network then would provide a function that replaces Eqs.

(1) and (2).

The model used to generalize the distortion of the image and

measured the distance between each pair is built with Keras and

Tensorflow library. After the process of Hyper parameters tuning,

the proposed Neural Network’s hyper-parameters is shown in

Table 1 and the parameters for the OpenCV sub-pixel function in

Table 2.

Loss
1

n
--- y′i yi–( )
i 0=

n

∑=

y′i

Fig. 4 A Neuron passing the weighted sum of all the inputs through

the non-linear Activation function

Table 1 The Structured light Scanner information

No. Characteristic Value

1 Camera scanner system 2 cameras and 1 projector

2 Scanning time 2 s/time

3 System resolution 2048 × 1536

4
Maximum number of 3D 

pixels obtained
3.145.728 pixels

5 Average distance of points 0.014 mm

6 Working area 180 × 120 mm

7
Distance from working area 

to camera scanner system
250 ÷ 450 mm

8 Accuracy 0.013-0.03 mm

9 Scanning technique

Structured light (white light) is 

analyzed using “Three-step 

phase-shifting algorithm by 

Zhang, et al.

10 Working range
Yaw: 360 degrees. Pitch: 20 

degrees. Z-axis: 100 mm

Table 2 Hyper-parameters for training model

Name Value

Calibration chessboard size (3, 4)

Number of different positions 120

Number of nodes in each layer (1024, 512, 256, 128, 64, 32)

Batch size 1024

Number of training epochs 5000

Dropout26 0

L2 regularization 0

Loss Mean absolute error

Activation function Exponential linear unit20

Kernel initializer Glorot uniform21

Optimizer RMSprop22

Optimization strategy
Snapshot ensemble23 

(5 snapshots)

Test method 10-fold cross-validation
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2.3 Data Preparation

One of the main requirements to establish a working Deep

Neural Network is that it need to have enough data. When the

pattern is too complex for a small dataset to represent, the network

would fail to generalize the pattern due to over-fit (the amount of

noise in data is high) or under-fit (the amount of data is not enough

to represent the pattern needed to learn). 

A similar method for measuring geometric distance using

Neural Network was proposed by Chao-Ton Su, et al.,19 but it did

not have enough data for the network to formulate a generalized

solution, thus, its solution is very target-dependent and camera-

dependent. 

In order to provide a large dataset for the network (more than

10,000 input-output pairs in this case), the author used a printed

chessboard pattern calibration board as the data generating source.

First, the distances between the key features in the calibration

board are measured. In this experiment, a 4 × 5 printed chessboard

is used to detect M = 12 key features shown in Fig. 5. Then, the

coordinate and the distance of each pair of key features would be

used to train the Neural Network (For M = 12, there are C2
12 = 66

pairs of key features in one image). Next, the chessboard images in

N different locations is captured. For each image, M key features

can be detected. Thus, the number of samples in the dataset is:

(6)

Note that, the N input images need to be varied in location so

that all of the key features' coordinate in the pixel plane spread out

most of the picture. The reason for this requirement is that there are

different types of distortion in the image, each has a different effect

on different areas of the picture. Without a high enough density of

data point in the pixel plane, the dataset would not have enough

information about the image distortion for the network to analyze

and give a proper solution.

3. Result and Discussion

3.1 Result

The equipment for the experiment is the Structure light Scanner

using two High Dynamic Range cameras. These are the Point Grey

Flea3 USB 3.0 cameras with M0814-MP2 lens (Fig. 7). More

information about the Scanner can be found on Table 1 and Fig. 6.

About the printed chessboard, each tile has the side length

approximating 10 mm. To increase the accuracy as well as to

validate the measuring method, an assumption has been made that

the actual distance between each pair of key features in Fig. 5 (For

example: pairs (0,1), (0,2)) are values measured by the Universal

microscopy UYM21 in the department of Precision Optical &

Mechanical Engineering. For each of the 10-folds, the model is

trained with 90% of the data (input: coordinate of a pair, output:

distance measured by UYM21) and tested with the last 10% of the

data.

3.1.1 Using 2 Images as Input

The experiment system consists of two cameras, located at the

20 degrees on the left and right of the z-axis. Thus, for each

location of the calibrating chessboard, one would collected 2 input

pictures, each contains C2
12 = 66 pairs of input-output data (Fig. 5).

For this experiment, after removing invalidate input, the authors

used 119 different positions, each with 2 photos captured from 2

camera. Using the 10-fold cross-validation testing procedure, the

n C
2

M
N×=

Fig. 5 An image of the calibration chessboard taken by the system

with M = 12 detected key features

Fig. 6 Scanner’s working table
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Mean Absolute Error (MAE) of the network is measured as

1.25 × 10-2 mm with the standard deviation of 1.82 × 10-3 mm.

3.1.2 Using 10 Images as Input

Instead of only capturing images in the 0-degree plane, another

experiment is conducted with the angle between the plane holding

the calibration board and captured the images at -10, -5, 0, 5 and 10

degrees.

Some hyper-parameters of the network are also changed such as

the number of epochs is 300,000, the Optimizer is Adam24 since

empirical result shows that this setup would help the model

converge faster and have higher accuracy.

For this experiment, after removing invalidate input, the dataset

consists of 44 different positions, each taken with 5 different angles

of the plane, with 2 photos captured from 2 camera. Using the 10-

folds cross-validation testing procedure, the Mean Absolute Error

(MAE) of the network is measured as 1.24 × 10-2 mm with the

standard deviation is 1.63 × 10-3 mm.

3.2 Discussion

Besides from the experiment results shown in 3.1, the proposed

measuring method is tested with the same input, but the output, the

distance between each key features pair, is not measured but

calculated with the assumption that all tiles edges are 10 mm in

length and all vertical lines are perpendicular to all horizontal lines.

The results are impressive, with Mean Absolute Error (MAE) of

the network is 4.32 × 10-5 mm with the standard deviation is

4.41 × 10-5 mm. This suggesting that the proposed method is a new

and viable way to measure in 2D dimensions.

In previous researches, Chao-Ton Su, et al.19 achieved the best

accuracy with MAE in range of 1.00 × 10-3 to 2.20 × 10-3 mm.

Qiucheng Sun7 also have a good result with MAE is 4.5 × 10-3 mm.

Bin Li8 measured the systematic error is less than 1.00 × 10-3 mm

and Yong Wang6 results in 2.00 × 10-2 mm. While it seems that the

previous researches yield better results than the proposed method

of measurement (MAE is 1.24 × 10-2), this method still has some

Fig. 7 Scanner (CFOC) and chessboard in the experiment setup

Table 3 Parameters for sub-pixel function

Name Value

win-size 1

max-iteration 30

Epsilon 1 × 10-9 

Table 4 MAE results for 2 images input experiment 

Name Value (mm)

Fold 1 MAE 1.14 × 10-2

Fold 2 MAE 1.20 × 10-2

Fold 3 MAE 1.20 × 10-2

Fold 4 MAE 1.23 × 10-2

Fold 5 MAE 1.76 × 10-2

Fold 6 MAE 1.11 × 10-2

Fold 7 MAE 1.23 × 10-2

Fold 8 MAE 1.34 × 10-2

Fold 9 MAE 1.12 × 10-2

Fold 10 MAE 1.19 × 10-2

Mean 1.25 × 10-2

Population Standard Deviation 1.82 × 10-3

Table 5 MAE results for 10 images input experiment

Name Value (mm)

Fold 1 MAE 1.28 × 10-2

Fold 2 MAE 1.12 × 10-2

Fold 3 MAE 0.92 × 10-2

Fold 4 MAE 1.43 × 10-2

Fold 5 MAE 1.37 × 10-2

Fold 6 MAE 1.52 × 10-2

Fold 7 MAE 1.26 × 10-2

Fold 8 MAE 1.21 × 10-2

Fold 9 MAE 1.13 × 10-2

Fold 10 MAE 1.17 × 10-2

Mean 1.24 × 10-2

Population standard deviation 1.63 × 10-3
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advantages over the others:

(1) The experiment used a relatively low-quality camera

compare to laboratory standard. Still, this method leveraging the

ability of others measuring system (the Universal microscopy

UYM21) to achieve better accuracy than the camera resolution

(~0.1 mm per pixel).

(2) The proposed method is part independent and camera semi-

independent. Which means, after the calibration process, this

method can measure different parts without any further

modification steps. It will also lower the importance of the camera

quality in the system (since the accuracy also depends on the

reference measuring system).

(3) The proposed method has uncertainty equal to zero (it would

always yield the same result with the same input).

In the process of training and evaluating the model, the result

showed that the higher the training time, the lower the Mean

Absolute Error on both training dataset and validating dataset.

Furthermore, the gap between training and validating loss

throughout all 300,000 training epochs was always small,

suggesting that the model had not converged yet. Thus, better

training hardware than the GPU MSI GTX 1080 Titan 11 Gb with

a proper hyper-parameter set and longer training time would most

likely result in an even smaller error rate.

To improve the accuracy of this system without improving the

camera and lens, a standardized and measured calibrated

chessboard can be used. This will give more accurate labels to train

and test the network.

Through the experimenting process, the authors notice that this

Deep Regression system is very sensitive to any form of

regularization method. Different methods have been tried such as

Batch Normalization,25 Dropout,26 and L2 Regularization but all of

them significantly worsen the output. 

Due to the ability to map any set of input-output, some

practitioners may be tempted to structure a network to better

calibrate the camera. Theoretically, one can make such network

with the input is the pixel plane and the real-world coordinate of

key features, the output is the Intrinsic and Extrinsic parameters.

Using a customized loss function that measures the difference

between the predicted coordinate of the camera calibrated with the

output parameters, one could probably achieve a comparable or

slightly better result than the classical way to calculate Intrinsic and

Extrinsic parameters. However, since the classical calibration

procedure (using Brown - Conrady model) still only account for

the Radial and Tangential distortion, the improvements of this

method will be limited.

In summary, a Neural Network based method has been

developed to be used for part-independent planar-dimensions

measuring system. The result shows that the Deep Regression

model used in the experiment can improve the accuracy of a low-

quality optical measuring system. This was done by using Deep

Learning to search in the vast non-linearly solution space for a

function to represent the system camera’s intrinsic parameters,

extrinsic parameters and the distortions in the images with a

calibration chessboard measured by a high-accuracy measuring

system. For future research, one can try to make use of the power

of Convolution Neural Network and Transfer Learning in the

process of undistorting an image with a Neural Network that has

the undistorted image taken by the telecentric lens and the input is

the same image added with random distortion. Another research

direction would be developing a Deep Regression model for

correcting the 3D measurement of the existing system.
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